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Abstract
The free energy for a sample of smectic C liquid crystal bounded between
two semi-infinite plates with weak surface anchoring on the boundaries is
considered. A magnetic field is applied across the sample and the ensuing
layer undulations are studied. The free energy is minimized to give relations
involving the elastic energies, magnetic field strength and wave numbers which
govern the layer undulations. Forms for the critical field strength and critical
wave numbers are derived and compared to analogous results in a system with
strong surface anchoring. An expression for the layer undulation amplitude
is derived for weak anchoring which can be compared with the classical
Helfrich–Hurault theory for strong anchoring and recent experimental results
for cholesteric liquid crystals.

PACS numbers: 61.30.−v, 61.30.Dk

1. Introduction

This paper is concerned with field-induced layer undulations on smectic C (SmC) liquid
crystals confined between two flat plates. Layer undulations (which are related to buckling)
in liquid crystals occur since curvature deformations are capable of relaxing dilation or field-
induced stress. The phenomena can be described as follows. The smectic liquid crystal is
confined between two plates, which are parallel to the smectic layers and a magnetic field is
applied across the sample, parallel to the smectic layers, causing the layers to reorient if the
magnetic field is above some critical field strength Hc. Since the surface anchoring on the
plates does not allow the layers to tilt freely, an undulation of the layers is observed.

We consider a model for the onset of layer undulations in SmC liquid crystals subject
to an applied magnetic field with a weak-anchoring energy at the boundaries. There are
well known theoretical results which determine a critical magnetic field magnitude Hc for
the onset of layer undulations in infinite samples of smectic A (SmA) where the transition
from uniformly aligned planar layers to undulated layers is known as the Helfrich–Hurault
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Figure 1. Schematic arrangement of a planar aligned sample of SmC liquid crystal described in
Cartesian coordinates. The director n is tilted at an angle θ to the layer normal a; c is the unit
orthogonal projection of n onto the smectic planes. A magnetic field H of magnitude H is applied
in the x-direction. The director is subject to weak anchoring on the upper and lower boundary
plates at z = ±a/2.

transition [1, 2]. Extensions to this work for SmA have been made by, among others, Fukuda
and Onuki [3], Singer [4] and Stewart [5]. The derivation of critical field magnitudes for
infinite samples of SmA can be found in the books by Chandrasekhar [6] and de Gennes and
Prost [7]. An extension of this work from SmA to SmC has been carried out by Stewart [8]
where a free energy has been constructed in terms of the displacement of the layers, denoted
by u. However, all of these modifications assume that the undulations of the layers vanish
at the cell boundaries, i.e. the smectic layers are assumed fixed by infinitely strong surface
anchoring at the boundaries.

Motivated by the experimental and theoretical results on cholesteric liquid crystals by
Ishikawa and Lavrentovich [9] and Senyuk et al [10], we construct a model of a SmC liquid
crystal cell, with weak anchoring at the cell boundaries and with an applied magnetic field
across the sample in the direction parallel to the boundary plates and the smectic layers, given
schematically by figure 1. In section 2, the free energy of such a system is constructed and
then minimized using a Gâteaux variation to produce, when a suitable layer displacement
ansatz is supposed, relations involving the elastic energies, magnetic field strength and wave
numbers which govern the layer undulations. Forms for the critical field strength and critical
wave numbers are then derived using the free energy and the aforementioned relations and are
then compared to analogous results in a system with strong surface anchoring in figure 2. We
derive a form for the layer displacement amplitude in section 3 by comparing the free energy
at criticality with the post-transitional free energy. Comparisons with cholesteric experiments
[9] and the classical SmA theory are made in figures 3 and 4, respectively. Appropriate
distinctions between the cholesteric results in [9] and the SmC results presented here will be
made. Comments on the influence of the weak-anchoring energy density used to describe the
interactions at the cell boundaries will also be highlighted. A brief discussion, in section 4,
mentions that the techniques used in section 2 may be applicable to other smectic and lamellar
models.

Liquid crystals are anisotropic fluids made up of elongated molecules whose average
molecular axes align along a common direction in space which is usually denoted by the unit
vector n, called the director. It is known that SmC liquid crystals form locally equidistant
parallel layers in which the director n generally makes a fixed constant angle θ (the smectic
tilt angle) with respect to the layer normal. The SmA phase occurs when θ ≡ 0. Following
de Gennes and Prost [7], SmC can be described by introducing the unit layer normal a and
a vector c, which is the unit orthogonal projection of n onto the smectic planes, as shown in
figure 1. The director n is related to a and c via the relation

n = a cos θ + c sin θ. (1.1)
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It is also mathematically convenient to introduce the unit vector b defined by

b = a × c. (1.2)

The nine-term bulk elastic energy integrand wb for a non-chiral SmC liquid crystal can be
written in terms of the derivatives of a and c as [11]

wb = 1
2A21(∇ · a)2 + 1

2B2(∇ · c)2 + 1
2B1(a · ∇ × c)2

+ 1
2B3(c · ∇ × c)2 + 1

2 (2A11 + A12 + A21 + B3)(b · ∇ × c)2

− 1
2 (2A11 + 2A21 + B3)(∇ · a)(b · ∇ × c) − C2(∇ · a)(∇ · c)

−B13(a · ∇ × c)(c · ∇ × c) + (C1 + C2 − B13)(∇ · c)(b · ∇ × c), (1.3)

where the nine elastic constants Ai, Bi and Ci are related to those introduced by the Orsay
group [12], with the minor modifications A11 = 1

2A
Orsay
11 and C1 = −C

Orsay
1 .

The magnetic energy density, ignoring a contribution which is independent of the
orientation of n, may be written as [7]

wm = − 1
2µ0�χ(n · H)2, (1.4)

where H is the magnetic field, µ0 is the permeability of free space and �χ (in SI units) is the
magnetic anisotropy of the liquid crystal. The director is attracted to be parallel to the applied
field when �χ > 0.

2. Energy analysis, criticality and weak-anchoring effects

In section 2.1, we construct the relevant energy densities before investigating the first variation
in section 2.2. The influence of anchoring strength upon critical wave numbers and field
strengths will be presented. The strong-anchoring limit will be discussed in section 2.3.

2.1. Bulk and surface energies

We construct the relevant free energy for the system detailed in the introduction and figure 1,
with particular reference to the smectic layer displacement function. Smectic layers are
surfaces which can be represented by a layer function � of the form

�(x, y, z) = constant, (2.1)

so that the unit layer normal can be written as

a = ∇�

|∇�| . (2.2)

We shall assume that, for small distortions, � = �(x, z) so that there is no y-dependence in
u, a simplification also made by de Gennes and Prost [7] and Stewart [8, 13]. Under these
circumstances, we can introduce a displacement u of the layers so that u ≡ 0 would give, in
the geometry of figure 1, � = z and a = (0, 0, 1). It can then be supposed that the layer
function may be written as [8]

� = z − u(x, z). (2.3)

Following the methodology in [8], a and c can then be calculated as (working to second order
in u and its first derivatives)

a = (−u,x(1 + u,z), 0, 1 − 1
2u2

,x

)
, (2.4)

c = (
1 − 1

2u2
,x, 0, u,x(1 + u,z)

)
, (2.5)

from which it follows that b = (0, 1, 0).
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In the absence of dislocations, the smectic layer normal satisfies ∇ ×a = 0, a requirement
that was first identified by Oseen [14] for SmA liquid crystals and which is also valid for SmC
liquid crystals. However, as the smectic layers distort this requirement cannot generally hold,
even for small displacements, and we note that the expression for a in (2.4) only satisfies
this requirement to first order in u and its derivatives. If � changes slightly at the onset
of deformations and we assume a constant density then we expect a contribution to a layer
compression energy, in the present geometry, of the form [15]

wL = 1
2B0

(
u,z − 1

2u2
,x

)2
, (2.6)

where B0 > 0 denotes the smectic layer compression constant, having dimensions of energy
per unit volume. We note here that wL does not obey the transformation u → −u symmetry
requirement. However, from the cholesteric experimental work of Ishikawa and Lavrentovich
[16], the contribution entering through the derivative u,z is considered to be weak and therefore
(2.6) retains enough rotation invariance to correctly describe the layer energy at this level of
approximation. Considering the layer displacement term as a function that is independent of
y further allows us to consider a simplified quadratic-order version of the bulk elastic energy
stated at equation (1.3), given by

wb = 1
2A12u

2
,xx + 1

2B2u
2
,xz + (B13 − C1)u,xxu,xz. (2.7)

In the geometry of figure 1, the magnetic field takes the form

H = H(1, 0, 0), H = |H|. (2.8)

Employing the forms for a and c given by (2.4) and (2.5) allows us to expand the magnetic
energy density (1.4) to quadratic order in u and its derivatives to find

wm = − 1
2µ0�χH 2

(
u2

,x cos 2θ − u,x(1 + u,z) sin 2θ + sin2 θ
)
. (2.9)

As a magnetic field is applied across the sample, it is anticipated that the angle between
the normal to the boundaries and the director will change at the boundary due to the supposed
weak-anchoring conditions. Such anticipated boundary behaviour must lead to the introduction
of an additional surface energy corresponding to what is commonly called a weak-anchoring
energy. The simplest such surface energy density is of a form first proposed by Rapini and
Papoular [17] and can be written as [13]

ws = 1
2τ0(1 + ω(n · ν)2), (2.10)

with τ0 > 0, ω > −1 and ν is the unit outward normal to the boundary surfaces. The constant
ω is a dimensionless measure of the anchoring strength while τ0 has the dimensions of energy
per unit area. Using the definition of the director and the forms of the layer normal and the
orthogonal projection of the director given in equations (1.1), (2.4) and (2.5), respectively, we
may compute the surface energy density at each boundary (where ν± = (0, 0,±1)) so that it
is given by

ws = 1
2τ0 + 1

2τ0ω
(
cos2 θ − u2

,x cos(2θ) + u,x(1 + u,z) sin(2θ)
)
, (2.11)

where we have neglected powers of u and its derivatives of orders three and above.
The free energy integral can now be written in the form

F =
∫

�

(wL + wb + wm) d� +
∫

S

ws dS, (2.12)

where � is the region in which the magnetic field is applied, S is the surface region in which the
surface energy acts and the integrands wL,wb,wm and ws are the layer compression energy,
the bulk elastic energy, the magnetic energy and the weak-anchoring surface energy given by
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equations (2.6), (2.7), (2.9) and (2.11), respectively. We assume periodicity along the x-axis
with period 2π/qx and suppose that the liquid crystal is confined in the geometry of figure 1
so that the centre of the sample is at z = 0 and the cell has depth a. Hence the free energy per
unit length in y and over one period in x is

F =
∫ 2π

qx

0

∫ a
2

− a
2

(wL + wb + wm) dz dx +
∫ 2π

qx

0

(
[ws]z=− a

2
+ [ws]z= a

2

)
dx. (2.13)

The energy (2.13) for the energy densities given above is

F = 1

2

∫ 2π
qx

0

∫ a
2

− a
2

[
B0

(
u,z − 1

2
u2

,x

)2

+ B2u
2
,xz

−µ0�χH 2
(
u2

,x cos(2θ) − u,x(1 + u,z) sin(2θ) + sin2 θ
)

+ A12u
2
,xx + (B13 − C1)u,xxu,xz

]
dz dx

+
1

2
τ0ω

∫ 2π
qx

0

[
cos2 θ − u2

,x cos 2θ + u,x(1 + u,z) sin(2θ)
]
z=− a

2
dx

+
1

2
τ0ω

∫ 2π
qx

0

[
cos2 θ − u2

,x cos 2θ + u,x(1 + u,z) sin 2θ
]
z= a

2
dx, (2.14)

where an inconsequential constant contribution that has no dependence upon u and θ has been
neglected.

It is known that for small values of the smectic cone angle θ we can employ the
approximations [18]

A12 = K1 + Ā12θ
2, B2 = B̄2θ

2 B3 = B̄3θ
3, B13 = B̄13θ

3 C1 = C̄1θ,

(2.15)

where the elastic constants K1, Ā12, B̄1, B̄2, B̄13 and C̄1 are assumed to be only weakly
temperature dependent. It is known a priori that K1, B̄1 and B̄2 are positive [18]. We remark
here that making these small θ approximations for the sinusoidal contributions, discarding
constant contributions to the energy and taking the limit as θ → 0 reduces (2.14) to the
expression for the free energy for SmA liquid crystals, namely

F = 1

2

∫ 2π
qx

0

∫ a
2

− a
2

[
K1u

2
,xx + B0

(
u,z − 1

2
u2

,x

)2

− µ0�χH 2u2
,x

]
dz dx

+
1

2
τ0ω

∫ 2π
qx

0

[
1 − u2

,x

]
z=− a

2
dx +

1

2
τ0ω

∫ 2π
qx

0

[
1 − u2

,x

]
z= a

2
dx. (2.16)

2.2. First variation of the free energy

We seek to minimize the free energy (2.14) and do so by employing the Gâteaux variation as
outlined by Sagan [19, p 26]. Let S be a linear space over the field of reals R and denote the
space of competing functions of admissible variations by 	 ⊂ S and H ⊂ S, respectively.
We define the Gâteaux variation δF [η] of F [u] at u = um by

δF [η] = d

dε
F [um + εη]

∣∣∣∣
ε=0

, (2.17)

where ε ∈ R, provided the right-hand side exists for all η ∈ H. A necessary condition for the
functional F [u] to assume a relative minimum in 	 at u = um is that

δF [η] = 0, for all η ∈ H. (2.18)
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For clarity, we shall compute the variations of the bulk energy and the surface energy separately.
We denote the bulk free energy by Fb and its associated integrand by fb(ux, uz, uxx, uxz). The
surface energy is represented by Fs with its associated integrand fs(ux, uz). By writing

ū(x, z) = u(x, z) + εη(x, z), (2.19)

we have

d

dε
Fb(ū) =

∫ 2π
qx

0

∫ a
2

− a
2

dfb(ū)

dε
dz dx (2.20)

=
∫ 2π

qx

0

∫ a
2

− a
2

∂fb

∂ū,z

∂ū,z

∂ε
+

∂fb

∂ū,x

∂ū,x

∂ε
+

∂fb

∂ū,xz

∂ū,xz

∂ε
+

∂fb

∂ū,xx

∂ū,xx

∂ε
dz dx, (2.21)

and so we can state

d

dε
Fb(ū)

∣∣∣∣
ε=0

=
∫ 2π

qx

0

∫ a
2

− a
2

η,z

∂fb(u)

∂u,z

+ η,x

∂fb(u)

∂u,x

+ η,xz

∂fb(u)

∂u,xz

+ η,xx

∂fb(u)

∂u,xx

dz dx. (2.22)

Employing integration by parts we can express the above as

δFb[η] =
[[

η
∂fb

∂u,xz

]z= a
2

z=− a
2

]x= 2π
qx

x=0

+
∫ 2π

qx

0

[
η

(
∂fb

∂u,z

−
(

∂fb

∂u,xz

)
,x

)]z= a
2

z=− a
2

dx

+
∫ a

2

− a
2

[
η

(
∂fb

∂u,x

−
(

∂fb

∂u,xz

)
,z

−
(

∂fb

∂u,xx

)
,x

)
+ η,x

∂fb

∂u,xx

]x= 2π
qx

x=0

dz

+
∫ 2π

qx

0

∫ a
2

− a
2

η

((
∂fb

∂u,xz

)
,xz

−
(

∂fb

∂u,z

)
,z

−
(

∂fb

∂u,x

)
,x

+

(
∂fb

∂u,xx

)
,xx

)
dz dx.

(2.23)

Now consider, for the moment, the surface variation δFs , which can be written as

δFs[η] = d

dε
Fs(ū)

∣∣∣∣
ε=0

. (2.24)

An evaluation of this variation for the surface integral given in (2.14) gives

δFs[η] = 1

2
τ0ω

∫ 2π
qx

0
[η,x(sin(2θ)(1 + u,z) − 2 cos(2θ)u,x)]z=−a/2 dx

+
1

2
τ0ω

∫ 2π
qx

0
[η,x(sin(2θ)(1 + u,z) − 2 cos(2θ)u,x)]z=a/2 dx, (2.25)

which, upon an application of integration by parts, allows us to write the variation of the
surface energy in the form

δFs[η] = 1

2
τ0ω[[η(sin(2θ)(1 + u,z) − 2 cos(2θ)u,x)]z=−a/2

+ [η(sin(2θ)(1 + u,z) − 2 cos(2θ)u,x)]z=a/2]
x= 2π

qx

x=0

− 1

2
τ0ω

∫ 2π
qx

0
[η(sin(2θ)u,xz − 2 cos(2θ)u,xx)]z=−a/2 dx

− 1

2
τ0ω

∫ 2π
qx

0
[η(sin(2θ)u,xz − 2 cos(2θ)u,xx)]z=a/2 dx. (2.26)
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It follows that the total first variation is given by

δF [η] = δFb[η] + δFs[η]. (2.27)

We now set 	 ≡ H, where each u, η ∈ H are constrained to be periodic in x with period
2π/qx , even in z and have their derivatives with respect to z constrained to be odd in z. With
these constraints placed upon u and η, it can be shown that the first term in (2.23), the integral
with respect to z in (2.23) and the first term in (2.26) are equivalent to zero. It will be supposed
further that a solution for the layer displacement can take the form [8, 9]

u(x, z) = u0 sin(qxx) cos(qzz), (2.28)

with qx and qz wave numbers and u0 an arbitrary positive constant. Substituting this ansatz
into the full variation, given by the sum of the bulk variation and the surface variation in
(2.27), and making use of the constraints placed on η above, finally reveals the required first
variation to be

δF [η] = u0

∫ 2π
qx

0

∫ a
2

− a
2

η(x, z)
[
qxqz sin(qzz) cos(qxx)

(
(B13 − C1)q

2
x + µ0�χH 2 sin(2θ)

)
+ cos(qzz) sin(qxx)

(
q2

z (B0 + q2
xB2) + A12q

4
x − µ0�χH 2q2

x cos(2θ)
)]

dz dx

+ 2u0

∫ 2π
qx

0
η

(
x,

a

2

)
sin(qxx)

[
τ0ωq2

x cos(2θ) cos
(aqz

2

)
− qz sin

(aqz

2

) (
B0 + B2q

2
x

)]
dx. (2.29)

We recall the requirement (2.18) to minimize the free energy. However, note that η(x, z)

is evaluated at z = a/2 in the single integral with respect to x that appears in the full variation
(2.29). If we require δF [η] = 0 for all arbitrary η ∈ H, then both of the integrands that
appear in equation (2.29) must equate to zero independently. Therefore, assuming that η is
not necessarily zero on the boundaries, we are forced into the requirements

q2
x (C1 − B13) = µ0�χH 2 sin(2θ), (2.30)

q2
z = q2

x

(
µ0�χH 2 cos(2θ) − A12q

2
x

)
B0 + B2q2

x

, (2.31)

τ0ω = qzq
−2
x sec(2θ) tan

(aqz

2

) (
B0 + B2q

2
x

)
. (2.32)

These three equations are in the three unknowns at criticality, namely H, qx and qz. We may
set
C1 − B13 = 10−10 N, A12 = 4 × 10−12 N, B0 = 8.47 × 106 Nm−2,

B2 = 5 × 10−12 N, θ = π

6
rad,

(2.33)

as typical SmC material parameter values (cf [13]) in order to obtain the weak-anchoring
critical threshold Hc and the accompanying wave numbers qxc and qzc at criticality via the
numerical solution of the simultaneous equations (2.30)–(2.32). Plots of these numerical
solutions can be seen in figure 2. Note that the critical field strength and both wave numbers
tend to their respective classical strong-anchoring limit magnitudes as the anchoring strength
tends to the ‘infinite’ strong-anchoring limit. Expressions in the strong-anchoring limit case
are given in section 2.3. From these expressions, and the information given in figure 2, we can
calculate the magnitude of the critical field strengths for SmC with weak surface anchoring,
SmC with strong surface anchoring and SmA (θ ≡ 0) with strong surface anchoring. They
are Hc ≈ 1600 A m−1,Hc ≈ 3000 A m−1 and Hc ≈ 1250 A m−1, respectively.
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In the weak-anchoring case the critical field threshold Hc can also be identified from a
consideration of the energy. We can construct the energy difference �F = F(u(x, z)) −
F(u ≡ 0) between the zero solution and the variable solution discussed above. As H increases
above zero, the quantity �F will first reach zero when the system reaches criticality at the
critical field magnitude Hc that will occur as the wave numbers also achieve their critical
values qxc and qzc. Inserting the solution (2.28) and the zero solution into �F shows, after
some calculation working to second order in u and its derivatives, that Hc, qxc and qzc must
satisfy the relation

µ0�χH 2
c cos(2θ) = A12q

2
xc +

(
B0 + B2q

2
xc

) q2
zc

q2
xc

(
aqzc − sin(aqzc)

aqzc + sin(aqzc)

)

− 4τ0ω cos(2θ)
qzc cos2(aqzc/2)

aqzc + sin(aqzc)
. (2.34)

This relation is certainly satisfied whenever Hc, qxc and qzc satisfy equations (2.30)–(2.32):
note that if we substitute for H 2

c via the wave number requirement (2.31) in terms of qxc and
qzc then condition (2.34) reduces to the corresponding requirement given by equation (2.32)
at criticality. We also remark that the results in (2.31), (2.32) and (2.34) reduce to the forms
given by Ishikawa and Lavrentovich [9] for a lamellar system with weak-anchoring conditions
for cholesteric liquid crystals when θ is set to zero. Therefore the above results for the weak
Helfrich–Hurault threshold Hc for SmC are natural extensions to those for SmA and other
lamellar-like materials.

2.3. The strong-anchoring limit case

The strong-anchoring limit occurs as ω → ∞ in (2.32). This happens when qz tends to the
limiting value of π/a. Under these circumstances, the relation (2.31) gives an expression for
the magnetic field magnitude in terms of the wave number qx , given by

µ0�χH 2 cos(2θ) = q2
xA12 + B2

(π

a

)2
+ B0q

−2
x

(π

a

)2
. (2.35)

The right-hand side of this expression can be minimized with respect to the wave number qx

in order to determine the critical field magnitude Hc at a critical value qxc of the wave number
for the onset of the Helfrich–Hurault transition. A straightforward calculation determines that

q2
xc = 1

λ

π

a
, with λ =

√
A12

B0
, (2.36)

where λ has been introduced as a typical length scale [13, p 289], analogous to that used by de
Gennes and Prost [7] for SmA. Inserting qxc into (2.35) shows that the critical field strength
Hc is given by

µ0�χH 2
c cos(2θ) = 2π

A12

λa
+ B2

(π

a

)2
. (2.37)

Using the approximations (2.15), we can take the limit as θ tends to zero to find that the
classical threshold for SmA can be recovered, which may be expressed as [7, 13]

µ0�χH 2
c = 2π

K1

λa
, where λ =

√
K1

B0
. (2.38)

Thus the results in (2.31) and (2.32) for SmC liquid crystals are consistent extensions to
those known for SmA under strong-anchoring conditions. The result for Hc in (2.37) also
extends that which is known for SmC [8, 13] when terms involving uzz in the energy integrand
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(a)

(b)

(c)

Figure 2. Plots showing the dependence of the critical field strength and wave numbers on the
anchoring strength for the material parameter values given by (2.33). The plots for the variable
anchoring strength (solid lines) tend towards the strong-anchoring limit cases (dashed lines) as
the anchoring strength increases.

(which can appear after repeated integration by parts) are neglected; this neglection, which
essentially leads to the omission of the B2 contribution in (2.37), is considered valid in many
circumstances by physical considerations because such terms will be dominated by the layer
compression contribution B0u

2
z , as mentioned in [7, p 343].

3. Displacement of layers

In order to calculate an approximation for the displacement of the layers immediately above
the critical magnetic field Hc, we retain the higher order terms of u and its derivatives in the
free energy, which were ignored when obtaining the critical field strength; this procedure has
been adopted elsewhere [9]. Substituting the ansatz (2.28) for u, we compute the difference
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between the post-transitional free energy and the free energy at criticality. This is given by

F(H) − F(Hc) = 3πu0γB0q
3
x

256qz

+
πa

qx

(
sin2 θ +

1

4
u2

0µ0�χ
q2

x

aqz

cos 2θ(sin aqz + aqz)

) (
H 2

c − H 2
)
, (3.1)

where

γ = 4 cos3
(

1
2aqz

)
sin

(
1
2aqz

)
+ 6 cos

(
1
2aqz

)
+ 3aqz. (3.2)

Minimizing this energy difference with respect to the layer undulation magnitude u0 results
in the solution

u0 =
(

32

3

) 1
2
(

µ0�χH 2
c

γB0q2
x

cos(2θ)(sin(qza) + aqz)

) 1
2
((

H

Hc

)2

− 1

) 1
2

, (3.3)

which, upon using the relation given by equation (2.31), can be presented as

u0 =
(

32

3γB0

) 1
2
(((

B0 + B2q
2
x

)q2
z

q4
x

+ A12

)
(sin(qza) + aqz)

) 1
2
((

H

Hc

)2

− 1

) 1
2

. (3.4)

In figure 3, we compare the results from the experiments presented in [9] with the classical
SmA theory [1, 2, 7] and the layer displacement result given in (3.4). In order to compare
the results legitimately, we have employed the material parameter values B0 = 0.44 J m−3

and K = 3.7 × 10−7 N, as suggested for cholesterics [9] and assigned a = 0.0017 m as
the depth of the cell. All other material parameter values used are given via (2.33) and the
wave numbers are set as qx ≈ 106 m−1 and qz ≈ 5 × 103 m−1, which are realized from
figure 2. Similarly, a comparison plot for the displacement amplitude using the classical
theory and the revised theory presented here for typical smectic parameter values, given via
(2.33), and the wave numbers given above, is presented in figure 4. We note here that the
value of the elastic constant A12 given in (2.33) is an estimate, since measurements of the
layer bending constants and the coupling constants are rare. We use the relation given in
(2.15) to assume A12 ≈ K1 = 4 × 10−12 N. The results obtained show that whilst the layer
displacement amplitudes of the revised SmC theory are of the same order of the classical
SmA theory (and the cholesteric experimental results), we can clearly see, in both comparison
plots, that the revised theory permits layer undulations of greater magnitude. This result is
expected physically as the weak-anchoring energy allows greater flexibility of the layers and
the director at the boundary than strong anchoring.

It is known, in the case of an applied electric field, that the above methodology will produce
a mathematically analogous situation [10]. However, the recent experiments of Senyuk et al
[10] have reported that as the magnitude of the electric field increases above the threshold
value Ec the layer disturbances will exhibit sinusoidal undulations before going on to display
periodic undulations that resemble Jacobian functions. Moreover, in very high field regimes,
these structures will begin to be replaced by a complex arrangement of parabolic focal conic
domain structures (PFCD) that are made up of parallel layers [10]. Such structures have been
reported at values of E/Ec � 1.9. The model that has been introduced in this paper for the
undulation amplitude will be valid for fields that are just above the threshold value Ec. For
the sinusoidal ansatz used above, the results in figures 3 and 4 are therefore expected to be
analogously applicable to electric field effects for field magnitudes just above Ec. A fully
nonlinear analysis, beyond the scope of this paper, is required in order to extend the model
discussed in [10] for the transition to the PFCD structure. Such work would be of direct
relevance to the situation for applied magnetic or electric fields.
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Figure 3. Comparison of the displacement amplitude u0 immediately above Hc for the
experimental results of Ishikawa and Lavrentovich [9] (dotted lines), the classical theory of SmA
[1, 2] (dashed line) and the revised theory for SmC presented here (solid line). We see that the
SmC case results in a layer displacement magnitude of the same order but below the upper and
lower bounds for a typical cholesteric striped phase. The displacement for SmC is also greater
than that for the classical Helfrich–Hurault effect in SmA. Here, for comparison with the previous
results in [9], we have assumed a = 0.0017 m, B = 0.44 J m−3, qx ≈ 106 m−1 and qz ≈ 5 ×
103 m−1.

Figure 4. Comparison of the displacement amplitude immediately above Hc of the classical theory
of SmA and the revised theory for SmC. Here, the typical smectic material parameter values given
in (2.33) have been used, along with a = 0.0017 m, qx ≈ 106 m−1 and qz ≈ 5 × 103 m−1.

4. Discussion

This paper has considered a sample of smectic liquid crystal, confined between two semi-
infinite plates, with weak anchoring on the cell boundaries. A magnetic field H is applied
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parallel to the smectic layers, causing displacement of the layers when the magnitude of the
field is above some critical threshold Hc. Using the Rapini–Papoular surface energy [17], and
the previous methodology of Stewart [8], we have constructed a free energy which describes
this system.

Minimizing the free energy using a Gâteaux variation, necessary requirements on the
layer displacement function were found. Assuming a form for the layer displacement
function allows us to state relations between the wave numbers describing the displacements,
the elastic energies of the liquid crystal and the magnetic field strength. By employing
these relations, along with the free energy and the supposed layer displacement ansatz, we
have computed a form for the critical field strength and a relationship between the critical
wave numbers. Illustrations showing the dependence of the critical field strength and critical
wave numbers upon the anchoring strength (and consequently comparing the results with the
classical strong-anchoring case) have been presented in figure 2. The effect that the anchoring
strength has on the critical field strength (and wave numbers) is evident in these illustrations
and the limiting magnitude of the aforementioned properties as the anchoring strength reaches
‘strong-anchoring’ proportions has been discussed in section 2.3. The Rapini–Papoular weak-
anchoring surface energy, mentioned above, has been used here. Nevertheless, there are other
theoretical models for weak-anchoring energies and there is scope for further investigation
of weak-anchoring phenomena by comparing the results found when different surface energy
potentials are used (e.g. [20–22]). The application of the minimizing technique used in
section 2 is quite general and could be developed for such other anchoring potentials and
smectic and lamellar models. Additionally, there are various other elastic energies available
for smectic and related mesophases, such as those mentioned by Stallinga and Vertogen
[23, 24], and these may also be deployed in a similar analysis.

The displacement of the layers immediately above the critical magnetic field Hc has been
calculated in section 3 by minimizing the change in the free energy from the critical state to
the post-transitional state. In doing so, we find a form for the layer displacement amplitude
which is comparable to the displacement amplitude found from the classical Helfrich–Hurault
theory [1, 2] and the experimental work in cholesteric liquid crystals carried out by Ishikawa
and Lavrentovich [9] and Senyuk et al [10]. We can see from figure 3 that using material
parameters suggested in [9] the amplitudes of the undulations in a SmC liquid crystal, while
being of the same order, are greater than those estimated via the classical Helfrich–Hurault
theory, yet lower than those calculated experimentally in [9] for a similar cholesteric system.
Similar results are found when typical SmC parameter values, as suggested in [13], are used
to compare the classical Helfrich–Hurault theory with the theory presented in this paper.

As mentioned in section 3, an application of an electric field to induce layer undulations
well above threshold values has been carried out experimentally, and analysed in a similar
fashion to that here and in [9], by Senyuk et al [10]. These authors also incorporated weak
anchoring into their model. The transformation sequence from sinusoidal undulations to
Jacobian function undulations and then to parabolic focal conic domains as the magnitude of
the electric field is increased above the critical threshold has been observed experimentally in
[10]. A similar transformation from sinusoidal undulations to focal conics has been discussed
in [25–27]. The work in section 3 is directly relevant for magnetic or electric fields just above
threshold and it remains as future work to carry out a fully nonlinear analysis of the sequence
of layer disturbances that occur as the field magnitude increases. Critical electric fields have
also been calculated by Bevilacqua and Napoli [28] for the Helfrich–Hurault effect in SmA
under strong-anchoring conditions when taking into account the electro-mechanical coupling,
which has been neglected in this paper. Such coupling may also be introduced in the model
presented here for SmC with weak anchoring. Theoretical results for comparisons with data
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appear to be scarce in the literature and it is hoped that the investigation contained in this
paper will encourage more theoretical and experimental work which will attempt to ascertain
the validity of many of the current modelling assumptions.
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